Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways
نویسندگان
چکیده
The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms, we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons; however, although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders.
منابع مشابه
Intracranial self-stimulation induces Fos expression in GABAergic neurons in the rat mesopontine tegmentum.
The cholinergic neurons which originate in the mesopontine tegmentum and innervate the midbrain ventral tegmental area have been proposed to play a key role in intracranial self-stimulation reward. This mesopontine area also contains GABA neurons. Detailed information is still lacking, however, about the relationship of cholinergic and GABAergic neurons in this region to self-stimulation reward...
متن کاملGlutamate-enriched inputs from the mesopontine tegmentum to the entopeduncular nucleus in the rat.
In order to clarify the origin and to examine the synaptology of the projection from the mesopontine tegmentum to the entopeduncular nucleus, rats received discrete deposits of anterograde tracers in different regions of the mesopontine tegmentum. Anterogradely labelled fibres in the entopeduncular nucleus were analysed at the light and electron microscopic levels. To determine the neurochemist...
متن کاملSeparate mesocortical and mesolimbic pathways encode effort and reward learning signals.
Optimal decision making mandates organisms learn the relevant features of choice options. Likewise, knowing how much effort we should expend can assume paramount importance. A mesolimbic network supports reward learning, but it is unclear whether other choice features, such as effort learning, rely on this same network. Using computational fMRI, we show parallel encoding of effort and reward pr...
متن کاملOrexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy.
Orexinergic neurones in the perifornical lateral hypothalamus project to structures of the midbrain, including the substantia nigra and the mesopontine tegmentum. These areas contain the mesencephalic locomotor region (MLR), and the pedunculopontine and laterodorsal tegmental nuclei (PPN/LDT), which regulate atonia during rapid eye movement (REM) sleep. Deficiencies of the orexinergic system re...
متن کاملDissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200.
The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 90 شماره
صفحات -
تاریخ انتشار 2016